
Week 4

4.1 Cyclic subgroups (cont’d)
Proposition 4.1.1. Every subgroup of a cyclic group is cyclic.

Proof. Let G = 〈g〉 be a cyclic group, and H < G a subgroup. If H is trivial,

then it is cyclic (generated by the identity e). If H is nontrivial, then there exists

k ∈ Z>0 such that gk ∈ H . We set

m := min{k ∈ Z>0 : g
k ∈ H}.

We claim that H is generated by gm. First of all, we obviously have 〈gm〉 ⊂ H .

Conversely, let gn be an arbitrary element in H . By the Division Theorem, there

exist (uniquely) integers q and 0 ≤ r ≤ m − 1 such that n = mq + r. So

gn = (gm)q ·gr which implies that gr = (gm)−q ·gn ∈ H . This forces r = 0. Thus

gn ∈ 〈gm〉, and we have shown that H ⊂ 〈gm〉. This completes the proof.

Corollary 4.1.2. Any subgroup of (Z,+) is of the form nZ for some n ∈ Z.

Because of this corollary, we can define the gcd of two integers as follows.

For any a, b ∈ Z, the subset

〈a, b〉 := {ma+ nb : m,n ∈ Z}
is a subgroup of Z using Proposition 3.2.5 (check this!). Corollary 4.1.2 implies

that 〈a, b〉 is of the form dZ for some positive integer d. We then define the great-
est common divisor (gcd), denoted as gcd(a, b), to be this positive integer d. One

can check that this gcd satisfies the following properties (as expected):

• d | a and d | b,
• d = ka+ lb for some k, l ∈ Z, and

• if k | a and k | b, then k | d.
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Proposition 4.1.3. Let G be a cyclic group of order n and g ∈ G be a generator
of G, i.e. G = 〈g〉. Let gs ∈ G be an element in G. Then

|gs| = n/d,

where d = gcd(s, n). Moreover, 〈gs〉 = 〈gt〉 if and only if gcd(s, n) = gcd(t, n).

Proof. Let us write a = gs and let m := |a|. First of all, we have an/d = (gs)n/d =
(gn)s/d = e since |G| = n. Proposition 2.1.1 implies that m | (n/d). On the other

hand, we have e = am = gsm which implies, again by Proposition 2.1.1, that

n | sm. Dividing both sides by d gives (n/d) | (s/d)m. But n/d and s/d are

relatively prime, so we must have (n/d) | m. This proves that |gs| = m = n/d
where d = gcd(s, n).

To prove the second assertion, we first show that there is an equality of sub-

groups 〈gs〉 = 〈gd〉 where d = gcd(s, n). One inclusion is clear: as d | s, we have

gs ∈ 〈gd〉 which implies 〈gs〉 ⊂ 〈gd〉. Conversely, note that there exist k, l ∈ Z

such that d = ks + ln. So we have gd = (gs)k · (gn)l = (gs)k ∈ 〈gs〉 and hence

〈gd〉 ⊂ 〈gs〉. This proves the equality we claimed.

Now, 〈gs〉 = 〈gt〉 implies that |gs| = |gt| which in turn gives gcd(s, n) =
gcd(t, n). Conversely, if we have gcd(s, n) = gcd(t, n) =: d, then 〈gs〉 = 〈gd〉 =
〈gt〉.
Corollary 4.1.4. All generators of a cyclic group G = 〈g〉 of order n are of the
form gr where r is relatively prime to n.

4.2 Generating sets
Let G be a group, S a nonempty subset of G. Then similar to the case of a cyclic

subgroup, it can be proved using Proposition 3.2.5 that the subset:

〈S〉 := {am1
1 am2

2 · · · amn
n : n ∈ N, ai ∈ S,mi ∈ Z}

is the smallest subgroup of G containing S. We call 〈S〉 the subgroup of G gen-
erated by S. If G = 〈S〉, then we say S is a generating set for G.

Remark. Similar to the cyclic subgroup generated by a single element, we have

〈S〉 =
⋂

{H:S⊂H<G}
H.

If S = {a1, a2, . . . , al} is a finite set, we often write

〈a1, a2, . . . , al〉
to denote the subgroup generated by S.
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Example 4.2.1. • The set of cycles and the set of transpositions are two ex-

amples of generating sets for Sn.

• We also have Sn = 〈(12), (12 · · ·n)〉.
• We have Dn = 〈r, s〉 where r is the rotation by the angle 2π/n in the

anticlockwise direction and s is any reflection.

If there exists a finite number of elements a1, a2, . . . , al ∈ G such that

G = 〈a1, a2, . . . , al〉,

then we say that G is finitely generated.

For example, every cyclic group is finitely generated, for it is generated by

one element. Every finite group is also finitely generated, since we may take the

finite generating set S to be G itself. Finitely generated groups are much easier

to understand. For instance, there is a simple classification for finitely generated

abelian groups but not for those which are not finitely generated.

Exercise: The group (Q,+) is not finitely generated.

4.3 Equivalence relations and partitions
Let S be a set.

A partition P of S is a collection of subsets {Si : i ∈ I} of S (here I is some

index set) such that

• Si �= ∅ for each i ∈ I ,

• Si ∩ Sj = ∅ if i �= j, and

• ⋃
i∈I Si = S.

We may also say that P is a subdivision of S into a disjoint union of nonempty

subsets, written as

S =
⊔
i∈I

Si.

An equivalence relation on S is a relation ∼ (i.e. a subset of S × S) which is

• (Reflexive:) a ∼ a for any a ∈ S,

• (Symmetric:) if a ∼ b, then b ∼ a, and

• (Transitive:) if a ∼ b and b ∼ c, then a ∼ c.
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In fact, partition and equivalence relation are two equivalent concepts.

First of all, given a partition {Si : i ∈ I} of S, we can define a relation on S
by the rule a ∼ b if a, b ∈ Si for some i ∈ I . Then it is easy to check that ∼ is an

equivalence relation on S.

Conversely, suppose we are given an equivalence relation ∼ on S. For any

a ∈ S, the set

Ca = {b ∈ S : a ∼ b}
is called the equivalence class of a. The reflexive axiom implies that a ∈ Ca; in

particular, Ca �= ∅ for all a ∈ S. Also, S is the union of all the equivalence classes

Ca. Finally, we claim that if Ca ∩ Cb �= ∅, then Ca = Cb.

Proof of claim. Suppose there exists c ∈ Ca ∩ Cb. So we have a ∼ c and b ∼ c.
The symmetric and transitive axioms then imply that a ∼ b (and b ∼ a). Now for

any d ∈ Ca, we have d ∼ a, so d ∼ b by a ∼ b and the transitive axiom. Thus

d ∈ Cb and this shows that Ca ⊂ Cb. Reversing the roles of a and b in the same

argument shows that Cb = Ca. Therefore Ca = Cb.

We conclude that the collection of equivalence classes Ca, a ∈ S gives a

partition of S.

As an application, we give a proof of the fact that any permutation σ ∈ Sn is

a product of disjoint cycles:

Proof of Proposition 2.2.3. Let σ ∈ Sn be a permutation on the set In = {1, 2, . . . , n}.
For a, b ∈ In, we say a ∼ b if and only if b = σk(a) for some k ∈ Z. Exercise:
This defines an equivalence relation on In. So it produces a partition of In into a

disjoint union of equivalence classes:

In = O1 �O2 � · · · �Om.

(The equivalence classes O1, O2, . . . , Om ⊂ In are called orbits of σ.) Then, for

j = 1, 2, . . . ,m, we define a permutation μj ∈ Sn by

μj(a) =

{
σ(a) if a ∈ Oj,
a if a �∈ Oj.

Each μj is a cycle (of length |Oj|). They are disjoint since the Oj’s form a parti-

tion. Also we have

σ = μ1μ2 · · ·μm.
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